5.2 สเปกตรัมของโนวาขณะระเบิด

จากตอนท้ายของหัวข้อ 5.1.1 ได้เกริ่นให้เราทราบแล้วว่าสาเหตุของ PMH คือ ความลึก แสง (optical depth) ที่ลดลง ในหัวข้อนี้เราจะมาทำความเข้าใจว่าความลึกแสงนี้เองยังมีผลต่อ วิวัฒนาการของสเปกตรัมอีกด้วย และมีความสัมพันธ์โดยตรงกับอัตราการสูญเสียมวล (mass loss rate) ของดาวแคระขาว รวมทั้งรัศมีและอุณหภูมิยังผลของโฟโตสเฟียร์เทียม

5.2.1 วิวัฒนาการของสเปกตรัมก่อนถึงจุดสูงสุด

้วิวัฒนาการของสเปกตรัมก่อนถึงจุดสูงสุดสามารถอธิบายเป็นชั้นตอนได้ ดังนี้

 ทันทีที่ปฏิกิริยาเทอร์โมนิวเคลียร์รันอะเวย์เริ่มเกิดขึ้นที่ผิวของดาวแคระขาว โน วาจะมีการขยายเปลือกออกเรื่อย ๆ เราจึงเรียกช่วงเวลานี้ว่า "การขยายตัวของโฟ โตสเพียร์เทียม⁷ (pseudo - photosphere expansion)" โดยโนวาจะมีการแผ่-รังสีคล้ายดาวที่มีสเปกตรัมประเภท A - F และมีลักษณะสเปกตรัมคล้ายสเปกตรัม ของระเบิดอะตอมที่มนุษย์สร้างขึ้น นั่นคือ มีอุณหภูมิสูงและมีความลึกแสงมาก จึง เป็นที่มาที่เราเรียกระยะนี้ในอีกชื่อว่าระยะ "ไฟร์บอล (fireball) หรือลูกไฟ⁸" ซึ่ง สเปกตรัมช่วงนี้จะมีลักษณะกว้าง กระจายออก และแสดงองค์ประกอบของการดูด กลืนที่แสดงว่ามวลที่เสียไปขณะระเบิดมีความเร็วเป็นลบ (ดังแสดงในรูปที่ 5.10) โนวาในระยะนี้จะมีระดับไอออไนเซชันสูง เราจึงจะพบเส้นสเปกตรัมของธาตุองค์ ประกอบที่มีระดับไอออไนเซชันสูง (ดังแสดงในตารางที่ 5.2) ซึ่งพบได้ในช่วงที่โน วาสว่างขึ้นในตอนต้นจนถึงก่อนจุดสูงสุด

 ในช่วงเริ่มแรกของการระเบิด เอนเวลโลบของไฟร์บอลจะเริ่มจากมีขนาดเล็ก ความ หนาแน่นสูง และอุณหภูมิสูงจนสามารถแผ่รังสีเอกซ์ได้ หลังจากนั้นเอนเวลโลบจะ

⁷เสนอครั้งแรกโดย Ney & Hatfield (1978)

⁸เสนอครั้งแรกโดย Gehrz (1988)

ขยายขนาดใหญ่ขึ้นและมีอุณหภูมิลดลงไปด้วยในขณะเดียวกัน ทำให้ความลึกแสง มีค่าสูงขึ้น มวลที่เสียไปขณะระเบิดจึงมีความทึบแสงค่อนข้างมากในช่วงเวลาแรก ของการระเบิด ด้วยเหตุนี้จึงทำให้การแผ่รังสีมีการเลื่อนตำแหน่งของความยาวคลื่น ที่มีปริมาณการแผ่รังสีสูงสุด (λ_{max}) ไปในทางที่ความยาวคลื่นมากขึ้น⁹ ทำให้ต่อ มาเราเห็นกราฟแสงสว่างขึ้นสู่จุดสูงสุดในช่วงคลื่นที่ตามองเห็น

• หลังจากระยะไฟร์บอลสิ้นสุดลง จะต่อด้วยระยะต่อไปซึ่งยังคงเป็นระยะที่มีความ ทึบแสงมากอยู่ เรียกว่าระยะ "**ไอออนเคอร์เทน (iron curtain) หรือม่านเหล็ก**¹⁰" สาเหตุที่เรียกชื่อนี้เป็นเพราะเป็นระยะที่โฟโตสเฟียร์เทียมขยายขนาดจนมีอุณหภูมิ ต่ำสุด $\sim 10^4$ K ซึ่ง ณ อุณหภูมินี้ทำให้เกิดการสร้างธาตุในกลุ่มเหล็กมาก จึงเกิด เส้นสเปกตรัมดูดกลืนถี่ ๆ ของเหล็กในแถบความยาวคลื่นใกล้ยูวี ดูแล้วคล้าย ๆ ผ้า ม่านนั่นเอง ดังนั้นเมื่อเกิดบริเวณที่มีการดูดกลืนรังสียูวีอย่างนาแน่นขึ้น จึงส่งผลให้ λ_{max} เลื่อนไปสู่ช่วงคลื่นที่ตามองเห็นได้และช่วงอินฟราเรด ไอออนเคอร์เทนมัก จะมีความเข้มสูงสุดในช่วงที่กราฟแสงอยู่ในช่วงสว่างขึ้นตอนปลาย

5.2.2 ลักษณะสเปกตรัมแบบ P Cygni

ช่วงแรกของการระเบิดของโนวานั้น สสารจะพุ่งออกทุกทิศทาง ทำให้รูปร่างของเส้นสเปก-ตรัมมีการแสดงออกของทั้งการดูดกลืนและการแผ่รังสี ดังที่เรียกว่า "**ลักษณะสเปกตรัมแบบ P** Cygni (P Cygni profile) ¹¹"

รูปที่ 5.11 อธิบายกระบวนการเกิดของลักษณะสเปกตรัมแบบ P Cygni โดยเริ่มต้นจาก ช่วงแรกของการเบิดที่สสารจะพุงออกทุกทิศทาง (แสดงด้วยเส้นลูกศรสีดำ รูปที่ 5.11 ก.) โดยตำ-แหน่งเส้นสีเหลือง คือตำแหน่งศูนย์กลางของโฟโตสเฟียร์ ดังนั้นก๊าซที่พุ่งออกจากดาวในแนวทิศ ตั้งฉากกับผู้สังเกตตามเส้นสีเหลืองนี้ ผู้สังเกตจะเห็นปริมาณการแผ่รังสีที่สูงที่สุดเนื่องจากไม่มีการ

⁹เสนอโดย Shore et al. (1994)

¹⁰สนับสนุนโดย Schwarz et al. (2001)

¹¹เรียกชื่อตามดาว P Cygni ซึ่งเป็นดาวแรกที่พบว่าแสดงลักษณะเช่นนี้ในสเปกตรัม ลักษณะสเปกตรัมแบบ P Cygni นี้สามารถใช้ศึกษาการขยายตัวขอก๊าซ เปลือกโนวา หรือลมสุริยะกำลังแรงได้

ดูดกลืนใด ๆ และจะไม่สามารถรู้ว่าเส้นสเปกตรัมเคลื่อนที่ออกด้วยความเร็ว หรือเปรียบได้ว่าตำ-แหน่งเส้นสีเหลืองคือตำแหน่งที่มีความเร็วในแนวเล็ง (radial velocity) เป็นศูนย์ ขณะที่ตำแหน่ง A คือ บริเวณที่มีการแผ่รึงสีเข้ามาสู่ผู้สังเกต (ลูกศรสีฟ้า) พลังงานจะถูกดูดกลืนไปโดยก๊าซที่อยู่ ระหว่างแหล่งกำเนิดและผู้สังเกต ดังนั้นจึงแสดงเป็นเส้นสเปกตรัมการดูดกลืน (absorption line) ที่มีความเร็วติดลบมากสุด (ดังแสดงด้วยเส้นสีฟ้าในรูปที่ 5.11 ข.) ขณะที่ตำแหน่ง B คือ บริเวณ ที่สสารพุ่งเข้าสู่ตาผู้สังเกตในแนวเฉียง (ตามแนวลูกศรสีดำ) บริเวณ B จึงมีการแผ่รังสีที่กระจายตัว แบบระฆังคว่ำ ปรากฏเป็นเส้นสเปกตรัมการแผ่รังสี (emission line) โดยแสดงเพียงองค์กระกอบ ที่มีความเร็วเป็นลบ (ดังแสดงด้วยเส้นสีเขียวในรูปที่ 5.11 ค.) และตำแหน่ง C คือ บริเวณที่สสาร พุ่งออกจากตาผู้สังเกตในแนวเฉียง (ตามแนวลูกศรสีดำ) มีการแผ่รังสีที่กระจายตัวแบบระฆังคว่ำ ที่แสดงเพียงองค์ประกอบที่มีความเร็วเป็นบวก (ดังแสดงด้วยเส้นสีเขียวในรูปที่ 5.11 ง.)

ร**ูปที่ 5.10:** วิวัฒนาการของสเปกตรัมช่วงไฟบอลของโนวา T Pyx จากช่วงสว่างขึ้นตอนต้น (*t* = 0.8 วัน) ถึงช่วง PMH (*t* = 3.6-9.6 วัน) แสดงวิวัฒนาการของลักษณะเส้นสเปกตรัมแบบ P Cygni (ที่มา : ดัดแปลงจากงานวิจัยผู้เขียนใน Surina et al., 2014b)

รูปที่ 5.11: กระบวนการเกิดลักษณะสเปกตรัมแบบ P Cygni เมื่อสสารพุ่งออกจากโฟโตสเฟียร์ ทุกทิศทาง (ก.) พลังงานของก๊าซที่พุ่งเข้าหาผู้สังเกตจะมีทั้งที่พุ่งออกมาแล้วถูกดูดกลืนไว้ด้วยกลุ่ม ก๊าซที่ขวางอยู่ (ลูกศรสีฟ้า) และทั้งที่แผ่รังสีออกจากกลุ่มก๊าซนั้น (ลูกศรสีเขียวและสีแดง) เมื่อรวม ปริมาณการแผ่รังสี (สีฟ้าใน ข.) เข้ากับปริมาณการดูดกลืนรังสี (สีเขียวรวมกับสีแดงใน ค.) จะได้ ผลลัพธ์เป็นเส้นสเปกตรัมที่มีลักษณะสเปกตรัมแบบ P Cygni (เส้นประใน ง.) โดยเส้นสีเหลืองคือ ตำแหน่งแกนกลางของโฟโตสเฟียร์ที่มีความเร็วเท่ากับศูนย์

(ที่มา : วาดขึ้นใหม่โดยดัดแปลงจาก David Darling)

รูปที่ 5.12: เส้นสเปกตรัมที่แสดงลักษณะแบบ P Cygni ซึ่งเป็นรูปร่างที่แสดงถึงองค์ประกอบการ ดูดกลืนและการแผ่รังสี (ที่มา : ผู้เขียน)

เมื่อรวมปริมาณการแผ่รังสี (รูปที่ 5.11 ข.) เข้ากับปริมาณการดูดกลืนรังสี (รูปที่ 5.11 ค.) จะได้ผลลัพธ์เป็นเส้นสเปกตรัมที่มีรูปร่างที่แสดงทั้งการดูดกลืนและการแผ่รังสี (รูปที่ 5.11 ง.) ซึ่ง สามารถเทียบเคียงได้กับสเปกตรัมจริงในรูปที่ 5.12

รูปที่ 5.12 แสดงตำแหน่งความยาวคลื่น ณ จุดที่มีการดูดกลืนและ ณ จุดที่มีการแผ่รังสี ทำให้เราสามารถคำนวณหาความเร็วของมวลที่เสียไปขณะระเบิด (ejection velocity, v_{ej}) ได้ ดังสมการที่ 5.2 จากผลของปรากฏการณ์ดอปเปลอร์ (Doppler effect)

$$v_{ej} = \frac{\lambda_2 - \lambda_1}{\lambda_2} c \tag{5.2}$$

เมื่อ v_{ej} คือ ความเร็วของมวลที่เสียไปขณะระเบิดหรือความเร็วของสสารที่พุ่งออก

λ₁ และ λ₂ คือ ตำแหน่งความยาวคลื่น ณ จุดที่เริ่มมีการดูดกลืนและจุดที่มีการแผ่รังสี สูงสุด ตามลำดับ บนสเปกตรัมที่มีลักษณะสเปกตรัมแบบ P Cygni ดังแสดงในรูปที่ 5.12

c คือ ความเร็วแสง

เนื้อหาภายในของหนังสือเรื่อง "ฟิสิกส์ดาราศาสตร์เบื้องต้นของโนวา" ไม่สามารถเผยแพร่ในรูปแบบ ไฟล์ pdf ได้ เนื่องจากมีเงื่อนไขลิขสิทธิ์กับผู้จัดจำหน่าย โดยสามารถสั่งซื้อหนังสือได้จากช่องทางต่อไปนี้

ฟิสิกส์ดาราศาสตร์เบื้องต้นของโนวา

(Introduction to Astrophysics of Nova Eruption)

ผู้เขียน	ฟ้ารุ่ง สุรินา บุญ	ทิศ
ISBN	978-616-590-3	86-8
พิมพ์ครั้งที่ 1	มีนาคม 2565	จำนวนพิมพ์ 20 เล่ม
พิมพ์ครั้งที่ 2	เมษายน 2565	จำนวนพิมพ์ 100 เล่ม (ฉบับปรับปรุง)

ข้อมูลทางบรรณานุกรมของหอสมุดแห่งชาติ

ฟ้ารุ่ง สุรินา บุญทิศ.

ฟิสิกส์ดาราศาสตร์เบื้องต้นของโนวา.-- เชียงราย : คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเซียงราย, 2565. 219 หน้า. 1. ดาราศาสตร์ฟิสิกส์. 2. ซุปเปอร์โนวา. I. ชื่อเรื่อง. 523.01

ISBN 978-616-590-386-8

จัดพิมพ์โดย	ผู้ช่วยศาสตราจารย์ ดร.ฟ้ารุ่ง สุรินา บุญทิศ
	คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงราย
	80 ม. 9 ต. บ้านดู่ อ. เมือง จ. เชียงราย 57100
	โทรศัพท์ 08-8622-1950 อีเมล sc_farung@crru.ac.th
ภาพหน้าปก	ชื่อภาพ :"Alongside"
	ศิลปิน : พุทธรักษ์ ดาษดา
	ผู้สะสม : ฟ้ารุ่ง สุรินา บุญทิศ
พิมพ์ที่	บริษัท ดีเซมเบอรี่ จำกัด
	248/7 ซอยมิตตคาม ถนนสามเสน
	แขวงวชิรพยาบาล เขตดุสิต กรุงเทพ 10300
	โทรศัพท์ 0 2884 5933-4, 0 85997 7220
	อีเมล 4kumnum@gmail.com
การสั่งซื้อหนังสือ	ร้านหนังสือคำนำ www.kumnum.com
	เฟซบุคเพจ Astro-indy
ราคา	490 บาท

ฟิสิกส์ดาราศาสตร์เบื้องต้นของโนวา (Introduction to Astrophysics of Nova Eruption)

ผู้ช่วยศาสตราจารย์ ดร.ฟ้ารุ่ง สุรินา บุญทิศ วท.บ. (ฟิสิกส์) มหาวิทยาลัยเชียงใหม่ ประกาศนียบัตรวิชาชีพครู มหาวิทยาลัยเชียงใหม่ M.Sc. (Astronomy) Sejong University, Korea Ph.D. (Astrophysics) Liverpool John Mores University, UK

> Kumnum Publishing 2565

"... ข้า ฯ ขอประณตน้อมสักการ บูรพคณาจารย์ ผู้ก่อประโยชน์ศึกษา ..."

แด่ ด.ญ.แก้วประกายบุญ และ ด.ญ.บุญประกายแก้ว

คำนิยม

โนวา เป็นปรากฏการณ์ทางดาราศาสตร์เกี่ยวกับความสว่างที่เพิ่มขึ้นอย่างเฉียบพลันของ วัตถุท้องฟ้า คล้ายมีดาวฤกษ์เกิดขึ้นใหม่บนท้องฟ้า ซึ่งเป็นที่มาของชื่อวัตถุท้องฟ้าประเภทนี้ ความ สว่างของโนวาจะลดลงเรื่อย ๆ อย่างต่อเนื่องในเวลาต่อมา โดยอาจใช้เวลาประมาณหลายสัปดาห์ หรือหลายเดือน โนวาจึงเป็นวัตถุท้องฟ้าสำคัญชนิดหนึ่งที่นักดาราศาสตร์ให้ความสนใจศึกษาและ ค้นคว้าวิจัยเป็นอย่างมาก โดยเฉพาะอย่างยิ่งการศึกษาการวิวัฒนาการของระบบดาวฤกษ์

หนังสือ "ฟิสิกส์ดาราศาสตร์เบื้องต้นของโนวา" เล่มนี้ ที่เรียบเรียงโดย ผู้ช่วยศาสตราจารย์ ดร.ฟ้ารุ่ง สุรินา บุญทิศ เป็นหนังสือดาราศาสตร์เล่มหนึ่งที่น่าสนใจ ที่อธิบายรายละเอียดขั้นตอน การเกิดปรากฏการณ์โนวาชนิดต่าง ๆ ได้อย่างชัดเจน ใช้ความรู้พื้นฐานทางฟิสิกส์และคณิตศาสตร์ รวมทั้งความรู้ที่ผู้เรียบเรียงศึกษาเล่าเรียนมา สั่งสมประสบการณ์จนมีความเชี่ยวชาญ มาประกอบ ในการอธิบายได้เป็นอย่างดี นอกจากการอธิบายในเชิงทฤษฎีและผลการสังเกตการณ์โนวาในแต่ละ บทแล้ว ผู้เรียบเรียงยังเพิ่มบทการฝึกปฏิบัติเบื้องต้นเกี่ยวกับโนวาโดยใช้โปรแกรมคอมพิวเตอร์ที่ จะทำให้ผู้อ่านสามารถเข้าใจกลไกการแผ่คลื่นแม่เหล็กไฟฟ้า การถ่ายเทมวลสาร และการงอกพอก-พูนมวลของระบบดาวได้อย่างชัดเจน

หนังสือ "ฟิสิกส์ดาราศาสตร์เบื้องต้นของโนวา" เล่มนี้ จึงถือได้ว่าเป็นหนังสือที่เสริมความ รู้ทางฟิสิกส์ดาราศาสตร์ทั่วไปได้เป็นอย่างดียิ่ง โดยเฉพาะอย่างยิ่งด้านการวิวัฒนาการของระบบ ดาวคู่แบบใกล้ชิดซึ่งยังเป็นโจทย์สำคัญในการศึกษาฟิสิกส์ดาราศาสตร์ในปัจจุบัน

2-9-2-2

รองศาสตราจารย์ บุญรักษา สุนทรธรรม สถาบันวิจัยดาราศาสตร์แห่งชาติ (องค์การมหาชน) หนังสือเล่มนี้มีแรงบันดาลใจจากประสบการณ์ตรง ที่ผู้เขียนได้สอนและทำงานวิจัยดารา-ศาสตร์ร่วมกับนักศึกษามากว่า 10 ปี โดยที่ผ่านมาในทุก ๆ ปีจะมีนักศึกษาระดับปริญญาตรีชั้นปีที่ 4 วิชาเอกฟิสิกส์ คณะครุศาสตร์จำนวนหนึ่ง เลือกทำวิจัยดาราศาสตร์เป็นการศึกษาอิสระในราย-วิชาโครงการวิธีวิจัยฟิสิกส์ โดยที่นักศึกษาเหล่านั้นมีความรู้ด้านดาราศาสตร์เพียงพื้นฐานในระดับ มัธยมศึกษาตอนปลาย แต่งานวิจัยด้านโนวาที่ผู้เขียนมีความถนัดนั้นแม้จะมีเนื้อหาที่ไม่ยาก แต่ เนื้อหาทั้งหมดถือว่าเป็นเนื้อหาใหม่ที่นักศึกษาไม่เคยรู้มาก่อน ดังนั้น ผู้เขียนจึงจำเป็นต้องสอนเพื่อ ปูพื้นฐานความรู้ด้านฟิสิกส์และดาราศาสตร์ที่เกี่ยวข้องกับโนวาซ้ำ ๆ ในทุก ๆ ปีก่อนที่จะเริ่มทำ-งานวิจัย ทั้งนี้ หนังสือและเอกสารด้านโนวาที่เป็นภาษาไทยยังไม่เคยมีมาก่อน ส่วนหนังสือและ งานวิจัย ทั้งนี้ หนังสือและเอกสารด้านโนวาที่เป็นภาษาไทยยังไม่เคยมีมาก่อน ส่วนหนังสือและ งานวิจัยด้านนี้ในภาษาอังกฤษนั้น หากก้าวข้ามอุปสรรค์ด้านภาษาไปแล้วก็มียังเนื้อหาค่อนข้างขั้น สูงเกินกว่าที่นักศึกษาจะทำความเข้าใจได้ด้วยตัวเอง ประกอบกับในไม่กี่ปีที่ผ่านมานี้เอง โรงเรียน มัธยมศึกษาบางแห่งในภาคเหนือตอนบน เริ่มนำนักเรียนที่มีความสนใจเป็นพิเศษด้านดาราศาสตร์ เข้าพบ เพื่อให้นักเรียนเหล่านั้นมีประสบการณ์ทำงานวิจัยด้านดาราศาสตร์ที่ลึกซึ้ง แสดงให้เห็น ว่าการรวบรวมและเรียบเรียงความรู้พื้นฐานให้กับนักเรียนนักศึกษาที่สนใจจะศึกษาเรื่องโนวา จะ ก่อให้เกิดประโยชน์ที่จับต้องได้ต่อวงการวิชาการ

ผู้เขียนจึงเห็นเป็นโอกาสดีที่จะจัดทำหนังสือเล่มนี้ขึ้น โดยมีวัตถุประสงค์เพื่ออธิบายความ รู้ด้านฟิสิกส์ดาราศาสตร์ที่เกี่ยวข้องกับโนวา โดยเนื้อหาทั้งหมดจะเป็นความรู้เบื้องต้น สำหรับผู้ ที่สนใจดาราศาสตร์และมีพื้นฐานฟิสิกส์และคณิตศาสตร์ระดับมัธยมศึกษาตอนปลายสามารถทำ-ความเข้าใจได้ เหมาะแก่การอ่านก่อนที่จะเริ่มทำงานวิจัย และผู้เขียนสามารถนำไปใช้ประกอบการ เรียนการสอนวิชาดาราศาสตร์1 (ร่วมกับเอกสารคำสอนวิชาดาราศาสตร์1) ใช้บางส่วนในวิชาปฏิ-บัติการฟิสิกส์4 และวิชาวิธีวิจัยฟิสิกส์ได้ด้วย

โดยตลอดเล่มจะมีการแทรก "มุมคนชอบคำนวณ" (สำหรับผู้ที่ชื่นชอบการใช้คณิตศาสตร์

เพื่อหาคำตอบเป็นพิเศษ) และ "มุมคนชอบดรามา" (สำหรับผู้ที่ชื่นชอบเรื่องราวเบาสมอง แต่ยังคง เชื่อมโยงกับดาราศาสตร์ในหัวข้อนั้น ๆ) เพื่อตอบสนองรสนิยมการเรียนรู้ของแต่ละคนให้มากที่สุด

ผู้เขียนได้แบ่งเนื้อหาออกเป็น 7 บท เพื่อความเข้าใจง่ายและเพื่อเนื้อหาที่ครอบคลุมชัดเจน และได้แทรกงานวิจัยของตนเองในแต่ละบท ดังต่อไปนี้

- บทที่ 1 บทนำสู่ความหมายของโนวา : อธิบายว่าโนวาคืออะไร มีลักษณะกราฟ แสงอย่างไร และแบ่งเป็นกี่ประเภทเมื่อใช้ลักษณะกราฟแสงเป็นเกณฑ์ (แทรกงาน วิจัยลำดับที่ [8] และ [10])
- บทที่ 2 ปฏิกิริยาเทอร์โมนิวเคลียร์รันอะเวย์ : อธิบายว่าโนวาระเบิดได้อย่างไร (แทรกงานวิจัยลำดับที่ [1] และ [2])
- บทที่ 3 โนวาระเบิดซ้ำ : อธิบายว่าโนวาระเบิดซ้ำคืออะไร และเหตุใดจึงมีความ สำคัญ (แทรกงานวิจัยลำดับที่ [3], [5] และ [9])
- บทที่ 4 ความสัมพันธ์ระหว่างโนวาและซูเปอร์โนวาชนิด la : อธิบายว่าโนวาระ เบิดซ้ำ มีความสันพันธ์อย่างไรกับซูเปอร์โนวาชนิด la ซึ่งเป็นเสมือนเทียนมาตรฐาน
 ที่ใช้วัดระยะทางระหว่างดาราจักร จึงมีความสำคัญมากต่อในเอกภพวิทยา
- บทที่ 5 โนวาขณะระเบิด : อธิบายว่าเกิดอะไรขึ้นเมื่อโนวาระเบิด ทั้งด้านโฟโต เมตรีและสเปกโตรสโคปี (แทรกงานวิจัยลำดับที่ [4], [6], [8] และ [10])
- บทที่ 6 โนวาขณะอยู่ในสภาวะเงียบ : อธิบายว่าเราสามารถสังเกตเห็นอะไรบ้าง ขณะโนวาอยู่ในสภาวะเงียบ (แทรกงานวิจัยลำดับที่ [3] และ [7])
- บทที่ 7 ฝึกปฏิบัติการเบื้องต้นเกี่ยวกับโนวา : นำเสนอปฏิบัติการเบื้องต้นที่ผู้อ่าน สามารถทดลองทำเองได้จากข้อมูลทางดาราศาสตร์ที่เผยแพร่ทางออนไลน์ (แทรก งานวิจัยลำดับที่ [11] และ [12])

โดยผลงานวิจัยของผู้เขียนทั้ง 12 รายการ ได้แก่

- 1. Surina, F. & Kang, Y. -W. (2009) "Absolute Dimensions of Four Eclipsing Binaries", *ASP. Conf. Ser.* **404** 178.
- Kang, Y. -W., Surina, F. & Lee, J. J. (2009) "New Method of Light Curve Analyses of Eclipsing Binaries in the Small Magellan Cloud", ASP. Conf. Ser. 404 184.
- Surina, F., Bode, M.F., Darnley, M.J. (2012) "Investigation of the Progenitors of Nova Explosions" in The 11th Asian-Pacific Regional IAU Meeting (APRIM2011) ed. S. Komonjinda, Yuri Y. Kovalev and D. Ruffolo. NARIT Conf. Ser. 1 1.
- Surina, F., Hounsell, R.A., Bode, M.F., Darnley, M.J., Harman, D.J., Walter, F.M. (2014) "Spectroscopic and Photometric Development of T Pyxidis (2011) from 0.8 to 250 Days after Discovery" in Stella Novae: Past and Future Decades, ed. P. A. Woudt and V. A. R. M. Ribeiro. *ASP. Conf. Ser.* **490** 169.
- Darnley, M. J., Bode, M. F., Harman, D. J., Hounsell, R. A., Munari, U., Ribeiro, V. A. R. M., Surina, F., Williams, R. P., Williams, S. C. (2014) "On the Galactic Nova Progenitor Population" in Stella Novae: Past and Future Decades, ed. P. A. Woudt and V. A. R. M. Ribeiro. *ASP. Conf. Ser.* **490** 49.
- Surina, F., Hounsell, R.A., Bode, M.F., Darnley, M.J., Harman, D.J., Walter, F.M. (2014) "A Detailed Photometric and Spectroscopic Study of the 2011 Outburst of the Recurrent Nova T Pyxidis from 0.8 to 250 Days after Discovery", *Astrophys. J.* 147 107.
- Surina, F., Bode, M.F., Darnley, M.J. (2015) "Investigation of Galactic Classical and Recurrent Novae with Ground-based Observations and the Solar Mass Ejection Imager (SMEI)", *Pub. of Korean Astron. Soc.* **30** 237.
- Hounsell, R., Darnley, M. J., Bode, M. F.,Harman, D. J., Surina, F., Starrfield, S., Holdsworth, D. L., Bewsher, D., Hick, P. P., Jackson, B. V. (2016) "Nova Light Curves from the Solar Mass Ejection Imager (SMEI). II. The Extended Catalog", *Astrophys. J.* 820 2.
- Thipboon, R., Kaewrakmuk, M., Surina, F. & Sanguansak, N. (2017) "Photometric Investigation of Novae T Pyx, BT Mon and V574 Pup at Quiescence by using the 2.4-m Thai National Telescope", *J. Phys. Conf. Ser.* **901** 012003.

- Mueangkon, Y., Kamrat, S., Suekong, D., Aintawiphak, S., Jaiboe, A., Surina, F., Darnley, M.J., Bode, M.F. (2018) "Evolution of V339 Del (Nova Del 2013) since 0.37 – 75 Days after Discovery", *J. Phys. Conf. Ser.* **1144** 012014.
- Sutham, S., Sobbong, J., Surina, F. & Awipan, S. (2019) "Optical Morphology of the Ejected Shell of V339 Del using SHAPE", *J. Phys. Conf. Ser.* 1380 2029.
- Aindang, A., Inkum, R., Sarotsakulchai, T. & Surina, F. (2018) "Kepler-TESS Light Curve Analysis of KIC 10417986 as a Practical Example for Astronomical Research in Schools", *J. Phys. Conf. Ser.* **1719** 2017.

หนังสือเล่มนี้มิอาจทำสำเร็จขึ้นได้หากปราศจากผู้มีพระคุณ ผู้เขียนขอกราบขอบพระคุณ ผู้ทรงคุณวุฒิ รองศาสตราจารย์ บุญรักษา สุนทรธรรม พร้อมกับศาสตราจารย์ ดร.บุรินทร์ กำจัด ภัย และรองศาสตราจารย์ บุญยัง กฤตสัมพันธ์ เป็นอย่างสูง ที่กรุณาอ่านตรวจทานหนังสือเล่มนี้ และให้คำแนะนำในการปรับปรุงแก้ไขให้ดีขึ้น

ขอขอบพระคุณมหาวิทยาลัยราชภัฏเชียงรายที่สนับสนุนการเขียนหนังสือและตำราวิชาการ และขอบพระคุณสถาบันวิจัยดาราศาสตร์แห่งชาติ (องค์การมหาชน) ที่สนับสนุนทุนวิจัยเป็นอย่าง ดีตลอดมา

ผู้เขียนขอขอบคุณครอบครัว แบมแบมและบุญบุญที่เป็นแรงบันดาลใจในงานทุกอย่าง พ่อ เต่า แม่ภา แม่ลีนา ยายติ๋ม ตาอ๊อด ที่คอยเป็นกำลังเสริมช่วยเลี้ยงหลาน และสุดท้ายแต่ไม่ท้ายสุด ขอบคุณพี่บิ๊กสามีที่น่ารัก ที่อยู่เคียงข้าง เลี้ยงลูก ให้กำลังใจ และเป็นหลักชีวิตให้กันมาโดยตลอด ขอบคุณค่ะ

ฟ้ารุ่ง สุรินา บุญทิศ

คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงราย 6 กุมภาพันธ์ 2565

คำนำ

(ฉบับปรับปรุงแก้ไขครั้งที่ 1)

หนังสือ "ฟิสิกส์ดาราศาสตร์เบื้องต้นของโนวา" ที่เผยแพร่เป็นครั้งที่สองนี้ได้มีการปรับปรุง เนื้อหาและแก้ไขคำพิมพ์ผิดในการพิมพ์ครั้งแรก นอกจากนี้ ยังได้เพิ่มเติมรายละเอียดเนื้อหาใน แต่ละบทในด้านฟิสิกส์พื้นฐานมากขึ้น เพื่อให้เหมาะสมกับผู้อ่านที่หลากหลายยิ่งขึ้น หนังสือเล่มนี้ จึงเป็นหนังสือดาราศาสตร์ที่เหมาะกับผู้ที่มีความรู้พื้นฐานด้านดาราศาสตร์ระดับมัธยมศึกษาตอน ปลายมาแล้ว โดยเฉพาะนักศึกษาในระดับปริญญาตรีที่สนใจศึกษาและโดยเฉพาะที่กำลังจะเริ่ม ทำงานวิจัยเกี่ยวกับการวิวัฒนาการของระบบดาวคู่แบบใกล้ชิด ซึ่งยังเป็นโจทย์สำคัญในการศึกษา ฟิสิกส์ดาราศาสตร์ในปัจจุบัน

ขอขอบพระคุณ รองศาสตราจารย์ บุญรักษา สุนทรธรรม ที่ให้ความกรุณาเขียนคำนิยมให้ กับหนังสือเล่มนี้ ศาสตราจารย์ ดร.บุรินทร์ กำจัดภัย และรองศาสตราจารย์ บุญยัง กฤตสัมพันธ์ ที่ให้ข้อคิดเห็นอันเป็นประโยชน์ต่อการปรับปรุงหนังสือเล่มนี้ และขอขอบคุณมหาวิทยาลัยราชภัฏ เชียงรายที่ให้การสนับสนุนผู้เขียนระหว่างการปรับปรุงหนังสือเล่มนี้

ฟ้ารุ่ง สุรินา บุญทิศ

คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงราย 30 เมษายน 2565

สารบัญ

หน้า

คำนิย:	Ц			ก
คำนำ				P
คำนำ	(ฉบับปร์	รับปรุงแก้ไขครั้งที่ 1)		ช
สารบัย	ນູ			গ
สารบัย	ญตาราง			۲. ۲
สารบัย	ญภาพ			୶
บทที่	1	บทนำสู่ความหมา	เยของโนวา (Definition and Overview)	1
	1.1	บทนำ		1
	1.2	นิยามของโนวา		3
	1.3	สัณฐานของโนวา		8
	1.4	กราฟแสงของโนวา		11
		1.4.1	ประเภทของโนวาเมื่อพิจารณาอัตราเร็วของการหรื่	
			ลงของกราฟแสง	14
		1.4.2	การกระจายตัวและความถี่ที่พบโนวาในดาราจักร	
			ทางช้างเผือก	15
	1.5	การกระจายตัวของค	าาบการโคจรของโนวา	16
	1.6	สรุป		20
	1.7	เอกสารอ้างอิง		20

บทที่	2	ปฏิกิริยาเทอร์โ	มนิวเคลียร์รันอะเวย์ (Thermonuclear runaway)	23
	2.1	เรขาคณิตของผิวห	ข่อหุ้มโรช	24
		2.1.1	ประเภทของดาวคู่แบ่งตามสัณฐานการเต็มผิวห่อหุ้ม	
			โรช	27
		2.1.2	จุดลากรันจ์	29
		2.1.3	ความสัมพันธ์ระหว่างอัตราการสูญเสียโมเมนตัมเชิง-	
			มุมกับขนาดผิวห่อหุ้มโรชของดาวทุติยภูมิ	34
	2.2	การเกิดจานรวมม	วล	36
	2.3	การถ่ายเทมวลสา	รสู่ดาวแคระขาว	39
	2.4	เงื่อนไขในการเกิด	ปฏิกิริยาเทอร์โมนิวเคลียร์รันอะเวย์	42
	2.5	สรุป		44
	2.6	เอกสารอ้างอิง		45
บทที่	3	โนวาระเบิดซ้ำ	(Recurrent novae)	47
	3.1	ประเภทของโนวา	ระเบิดซ้ำ	48
		3.1.1	โนวาระเบิดซ้ำประเภท RS Oph	48
		3.1.2	โนวาระเบิดซ้ำประเภท U Sco	49
		3.1.3	โนวาระเบิดซ้ำประเภท T Pyx	49
	3.2	ความสัมพันธ์ระห	ว่างแอมพลิจูดกับอัตราเร็วของการหรี่ลง	51
	3.3	แผนภาพความสัม	พันธ์ระหว่างสีและแมกนิจูด	58
	3.4	ความสำคัญของก	ารศึกษาโนวาระเบิดซ้ำ	62
	3.5	สรุป		63
	3.6	เอกสารอ้างอิง		64
บทที่	4	ความสัมพันธ์ระ	ะหว่างโนวาและซูเปอร์โนวาชนิด Ia	
		(Relationship	with SNe Ia)	67
	4.1	ประเภทของซูเปอ	ร์โนวา	69
	4.2	ซูเปอร์โนวาชนิด I	a ในฐานะเทียนมาตรฐาน	72
	4.3	ช่องทางการเกิดซู	เปอร์โนวาชนิด Ia	74
		4.3.1	ช่องทางที่มีดาวแคระขาวเดี่ยว	74
		4.3.2	ช่องทางที่มีดาวแคระขาวคู่	77
	4.4	หลักฐานและข้อโต	ต้แย้งระหว่างช่องทาง SD และ DD	80

	4.5	สรุป		81
	4.6	เอกสารอ้างอิง		82
บทที่	5	โนวาขณะระเป	່ງທ (Novae at Outburst)	87
	5.1	กราฟแสงของโนว	วาขณะระเบิด	87
		5.1.1	กราฟแสงช่วงชะงักก่อนจุดสูงสุดมีอยู่จริงหรือไม่	88
		5.1.2	การแกว่งกวัดของกราฟแสงก่อนถึงจุดสูงสุด	98
	5.2	สเปกตรัมของโนว	วาขณะระเบิด	100
		5.2.1	วิวัฒนาการของสเปกตรัมก่อนถึงจุดสูงสุด	100
		5.2.2	ลักษณะสเปกตรัมแบบ P Cygni	101
		5.2.3	วิวัฒนาการของสเปกตรัมหลังจุดสูงสุด	105
	5.3	ความสัมพันธ์ระห	เว่างกราฟแสง ความเร็วของสสารที่พุ่งออก และปริมาณ	
		การผ่รังสี		106
	5.4	วิวัฒนาการกราฟ	แสงในช่วงความยาวคลื่นต่าง ๆ	111
	5.5	สรุป		112
	5.6	เอกสารอ้างอิง		112
บทที่	6	โนวาขณะอยู่ในสภาวะเงียบ (Novae at Quiescence)		115
	6.1	การแผ่รังสีของวัตถุดำ		116
		6.1.1	กฏของสเตฟาน	116
		6.1.2	กฏการกระจัดของของวีน	119
		6.1.3	ทฤษฎีของพลังค์	119
	6.2	องค์ประกอบของ	สเปกตรัมของดาวฤกษ์	121
	6.3	สเปกตรัมของโนว	อาขณะอยู่ในสภาวะเงียบ	123
		6.3.1	สเปก [็] ตรัมของดาวแคระขาว	123
		6.3.2	สเปกตรัมดาวทุติยภูมิ	126
		6.3.3	สเปกตรัมของจานรวมมวล	135
		6.3.4	ผลของปรากฏการณ์ดอปเปลอร์	138
	6.4	สรุป		140
	6.5	เอกสารอ้างอิง		140
,			2	

บทที่	7	ฝึกปฏิบัติการเบื้องต้นเกี่ยวกับโนวา (D.I.Y. Labs)	143
-------	---	---	-----

7.1	การประมาณระดับชั้นสเปกตรัมและชั้นกำลังส่องสว่างของดาวทุติยภูมิ	143
7.2	การหารูปร่างของเปลือกโนวาด้วยโปรแกรม $SHAPE$	154
7.3	การได้มาซึ่งกราฟแสงของระบบดาวคู่ในฐานข้อมูลกล้องโทรทรรศน์อว-	
	กาศเคปเลอร์	155
7.4	คำถามที่น่าสนใจ	155
7.5	สรุป	157
7.6	อ้างอิง	157
บรรณานุกรม		159
อภิธานศัพท์		171
ดัชนี		179
Index		185
ดัสบีวัตถ		191
9		171
ประวัติยังอี่ยงเ		102
ก 1 จาลเพ <u>็</u> กฤห		193

สารบัญตาราง

ตารางที่	1.1	ประเภทของโนวาเมื่อพิจารณาอัตราเร็วของการหรื่ลงของกราฟ แสง	15
ตารางที่	3.1	ข้อมูลการระเบิดโนวาระเบิดซ้ำทั้ง 10 ระบบในดาราจักรทาง ช้างเผือก	48
ตารางที่	3.2	ค่าคงที่ต่าง ๆ ในความสัมพันธ์ MMRD	51
ตารางที่	3.3	โนวาที่มีแอมพลิจูดการระเบิดต่ำ	55
ตารางที่ ตารางที่	5.1 5.2	ข้อมูลกราฟแสงของโนวาที่ตรวจวัดได้ด้วยกล้อง Solar Mass Ejection Imager (SMEI) ระดับของการไอออไนเซชันก่อนและหลังจดสงสด ณ ตำ-	88
	0.2	แหน่งบนกราฟแสงที่มีความสว่างเท่ากัน	108
ตารางที่	6.1	ประเภทของดาวทุติยภูมิของโนวาแอมพลิจูดต่ำ	135
ตารางที่	7.1	องค์ประกอบที่พบในเส้นสเปกตรัมของดาวสีแดง	145

สารบัญรูป

รูปที่	1.1	โนวา Eta Car	1
รูปที่	1.2	กราฟแสงของซูเปอร์โนวา SN2011fe	4
รูปที่	1.3	กราฟแสงของโนวา V339 Del	5
รูปที่	1.4	กราฟแสงของโนวาแคระ SS Cyg	5
รูปที่	1.5	แผนภาพองค์ประกอบดาวแปรแสงคาทาคลิสมิก	7
รูปที่	1.6	ผิวสมศักย์ของระบบดาวคู่	8
รูปที่	1.7	กราฟแสงในอุดมคติของโนวา	11
รูปที่	1.8	กราฟแสงช่วงชะงักก่อนจุดสูงสุด	13
รูปที่	1.9	การกระจายตัวของโนวาในดาราจักรทางช้างเผือก	16
รูปที่	1.10	การกระจายตัวของคาบการโคจรของดาวแปรแสงคาทาคลิสมิก	17
รูปที่	1.11	การกระจายตัวของคาบการโคจรของโนวา	19
รูปที่	2.1	โนวา GK Per	23
รูปที่	2.2	พิกัดการโคจรรอบจุดศูนย์กลางมวลของระบบดาวคู่ใด ๆ	24
รูปที่	2.3	ประเภทของดาวคู่แบ่งตามรูปร่างสัณฐานและลักษณะการเต็ม	
		ผิวห่อหุ้มโรชของดาวทุติยภูมิ	26
รูปที่	2.4	บ่อศักย์ของผิวห่อหุ้มโรช	28
รูปที่	2.5	ผิวสมศักย์แสดงตำแหน่งของจุดลากรันจ์ระหว่างดวงอาทิตย์	
		กับโลกใน 2 และ 3 มิติ	30
รูปที่	2.6	ผิวห่อหุ้มโรชของดาวคู่ที่มีค่าสัดส่วนมวลต่าง ๆ	31
รูปที่	2.7	เรขาคณิตของผิวห่อหุ้มโรช	32
รูปที่	2.8	การก่อตัวของวงแหวนและจานรวมมวล	33
รูปที่	3.1	กราฟแสงของโนวาระเบิดซ้ำ RS Oph ทั้ง 9 ครั้งตั้งแต่ปี ค.ศ.	
		1898-2021	47

รูปที่	3.2	กราฟแสงต้นแบบของโนวาระเบิดซ้ำในดาราจักรทางช้างเผือก ทั้ง 10 ระบบ	50
รูปที่	3.3	กราฟแสดงความสัมพันธ์ระหว่างแอมพลิจูด (A^\prime) กับอัตราเร็ว ของการหรื่ลง (t_3) ของโนวาระเบิดซ้ำเมื่อเทียบกับโนวาทั่วไป	54
รูปที่	3.4	แผนภาพความสัมพันธ์ระหว่างสีและแมกนิจูดในช่วงความยาว- คลื่นใกล้อินฟราเรดของโนวาระเบิดซ้ำและโนวาที่มีแอมพลิจูด	
		ต่ำ	60
รูปที่	4.1	G229.2-2.9 เศษซากซูเปอร์โนวาชนิด Ia	67
รูปที่	4.2	ค่าพลังงานยึดเหนี่ยวในนิวเคลียสเมื่อเทียบกับเลขมวลของธาตุ	
		ต่าง ๆ	68
รูปที่	4.3	กราฟแสงของซูเปอร์โนวาชนิด I และชนิด II	69
รูปที่	4.4	สเปกตรัมของซูเปอร์โนวาชนิด Ia, Ib, Ic และชนิด II	71
รูปที่	4.5	กราฟแสงต้นแบบของซูเปอร์โนวาชนิด Ia	73
รูปที่	4.6	แผนภาพอธิบายวิวัฒนาการดาวคู่กระทั่งเกิดซูเปอร์โนวาชนิด	
		la ผ่านช่องทาง SD	75
รูปที่	4.7	แบบจำลองการเกิดซูเปอร์โนวาชนิด Ia ผ่านช่องทาง SD ภาย ใต้พื้นผิวของดาวแคระขาว	76
รูปที่	4.8	แผนภาพอธิบายวิวัฒนาการดาวคู่กระทั่งเกิดซูเปอร์โนวาชนิด	
		la	78
รูปที่	5.1	ภาพถ่ายโนวา T Pyx ปี ค.ศ. 1997 เปรียบเทียบกันระหว่าง	
-		การถ่ายจากภาคพื้นดินและจากอวกาศ	87
รูปที่	5.2	กราฟแสงของโนวา T Pyx ขณะระเบิดในปี ค.ศ. 2011	90
รูปที่	5.3	กราฟแสงของ T Pyx ขณะระเบิดในปี ค.ศ. 2011 ที่แสดง	
		ระยะเวลาช่วง PMH \sim 10 วัน	91
รูปที่	5.4	กราฟแสงของ V1280 Sco ขณะระเบิดในปี ค.ศ. 2007 ที่	
		แสดงระยะเวลาช่วง PMH \sim 0.42 วัน	91
รูปที่	5.5	กราฟแสงของ V597 Pup ขณะระเบิดในปี ค.ศ. 2007 ที่แสดง	
		ระยะเวลาช่วง PMH \sim 0.21 วัน	92
รูปที่	5.6	กราฟแสงของ V5583 Sgr ขณะระเบิดในปี ค.ศ. 2009 ที่	
		แสดงระยะเวลาช่วง PMH \sim 0.21 วัน	92

รูปที่	5.7	แบบจำลองกราฟแสงโนวาขณะระเบิดในช่วงคลื่นที่ตามองเห็น	
0		ยูวี และรังสีเอกซ์ที่ M_{WD} = 0.65 M_{\odot}	94
รูปที่	5.8	แบบจำลองกราฟแสงโนวาขณะระเบิดในช่วงคลื่นที่ตามองเห็น	
•		ยูวี และรังสีเอกซ์ที่ M_{WD} = 1 M_{\odot}	95
รูปที่	5.9	แบบจำลองกราฟแสงโนวาขณะระเบิดในช่วงคลื่นที่ตามองเห็น	
		ยูวี และรังสีเอกซ์ที่ M_{WD} = 1.40 M_{\odot}	96
รูปที่	5.10	วิ้วัฒนาการของสเปกตรัมช่วงไฟบอลของโนวา T Pyx จากช่วง	
		สว่างขึ้นตอนต้นถึงช่วง PMH	102
รูปที่	5.11	กระบวนการเกิดลักษณะสเปกตรัมแบบ P Cygni	103
รูปที่	5.12	เส้นสเปกตรัมที่แสดงลักษณะแบบ P Cygni	104
รูปที่	5.13	วิวัฒนาการของกราฟแสงของ T Pyx ในช่วงคลื่นต่าง ๆ	107
รูปที่	5.14	กราฟแสงของโนวา T Pyx เปรียบเทียบกับความเร็วของสสาร	
		ที่พุ่งออก และปริมาณการผ่รังสี	109
รูปที่	5.15	กราฟแสงของโนวา V339 Del เปรียบเทียบกับความเร็วของ	
		สสารที่พุ่งออก และปริมาณการผ่รังสี	110
รูปที่	5.16	วิวัฒนาการกราฟแสงของโนวาในช่วงความยาวคลื่นต่าง ๆ	111
รูปที่	6.1	แผนผังองค์ประกอบของสเปกตรัมของโนวาขณะอยู่ในสภาวะ	
		เงียบ	115
รูปที่	6.2	สเปกตรัมของการแผ่รังสีของวัตถุดำที่มีอุณหภูมิหนึ่ง ๆ	117
รูปที่	6.3	องค์ประกอบของสเปกตรัม	122
รูปที่	6.4	สเปกตรัมของดาวแคระขาว eg139 และดาวใต้แคระ eg158	125
รูปที่	6.5	สเปกตรัมของโนวาระเบิดซ้ำ T CrB ขณะอยู่ในสภาวะเงียบ	127
รูปที่	6.6	สเปกตรัมของโนวา EU Sct ขณะอยู่ในสภาวะเงียบ	128
รูปที่	6.7	สเปกตรัมของโนวา V3964 Sgr ขณะอยู่ในสภาวะเงียบ	129
รูปที่	6.8	สเปกตรัมของโนวา V3645 Sgr ขณะอยู่ในสภาวะเงียบ	130
รูปที่	6.9	สเปกตรัมของโนวา AR Cir (A) ขณะอยู่ในสภาวะเงียบ	131
รูปที่	6.10	สเปกตรัมของโนวาระเบิดซ้ำ CI Aql ขณะอยู่ในสภาวะเงียบ	132
รูปที่	6.11	สเปกตรัมของโนวาระเบิดซ้ำ V2487 Oph ขณะอยู่ในสภาวะ	
		เงียบ	133
รูปที่	6.12	สเปกตรัมของโนวาระเบิดซ้ำ V368 Aql ขณะอยู่ในสภาวะเงียบ	134
รูปที่	6.13	ก้าซในภาวะที่มีความลึกแสงหนาและที่มีความลึกแสงบาง	136
รูปที่	6.14	ปรากฏการณ์ดอปเปลอร์ที่เกิดจากการมีอยู่ของจานรวมมวล	139

รูปที่	7.1	นิยามของความกว้างสมมูล	149
รูปที่	7.2	ความสัมพันธ์ระหว่าง EW(CaT) กับ $log \; g$ ของดาวในแถบ	
		กระบวนหลัก (V) ดาวใต้ยักษ์ (IV) และดาวยักษ์แดง (III)	151
รูปที่	7.3	ความสัมพันธ์ระหว่าง [TiO] ₈₄₆₅ และ [Na] ₈₁₉₀ ของดาวในแถบ	
		กระบวนหลักและดาวยักษ์แดง	152
รูปที่	7.4	ความสัมพันธ์ระหว่าง [TiO] ₁ และชั้นสเปกตรัมของดาวยักษ์	
		แดง (III)	152
รูปที่	7.5	ความสัมพันธ์ระหว่าง [TiO] ₂ และชั้นสเปกตรัมของดาวยักษ์	
		แดง (III)	153
รูปที่	7.6	ความสัมพันธ์ระหว่าง [VO] และชั้นสเปกตรัมของดาวยักษ์แดง	
		(111)	153
รูปที่	7.7	ตัวอย่างรูปร่าง 3 มิติของโนวาที่สร้างโดยโปรแกรม $SHAPE$	154